

Acute kidney injury: prevention, detection and management

NICE guideline

Published: 18 December 2019

Last updated: 28 September 2023

www.nice.org.uk/guidance/ng148

Your responsibility

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals and practitioners are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or the people using their service. It is not mandatory to apply the recommendations, and the guideline does not override the responsibility to make decisions appropriate to the circumstances of the individual, in consultation with them and their families and carers or guardian.

All problems (adverse events) related to a medicine or medical device used for treatment or in a procedure should be reported to the Medicines and Healthcare products Regulatory Agency using the <u>Yellow Card Scheme</u>.

Local commissioners and providers of healthcare have a responsibility to enable the guideline to be applied when individual professionals and people using services wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with complying with those duties.

Commissioners and providers have a responsibility to promote an environmentally sustainable health and care system and should <u>assess and reduce the environmental impact of implementing NICE recommendations</u> wherever possible.

Contents

Overview	4
Who is it for?	4
Recommendations	5
1.1 Assessing risk of acute kidney injury	5
1.2 Preventing acute kidney injury	9
1.3 Detecting acute kidney injury	13
1.4 Identifying the cause(s) of acute kidney injury	13
1.5 Managing acute kidney injury	14
1.6 Information and support for patients and carers	17
Terms used in this guideline	18
Recommendations for research	20
Key recommendations for research	20
Rationale and impact	22
Preventing acute kidney injury in adults having iodine-based contrast media	22
Context	25
Finding more information and resources	27
Update information	28

This guideline replaces CG169.

This guideline is the basis of QS76.

Overview

This guideline covers preventing, detecting and managing acute kidney injury in children, young people and adults. It aims to improve assessment and detection by non-specialists, and specifies when people should be referred to specialist services. This will improve early recognition and treatment, and reduce the risk of complications in people with acute kidney injury.

In **September 2023**, we amended recommendations on offering iodine-based contrast media to adults to clarify that, for non-emergency imaging, an estimated glomerular filtration rate (eGFR) measurement is only needed if the person is at increased risk of kidney injury. See the <u>update information</u> for details.

Who is it for?

- Healthcare professionals
- Commissioners and providers
- People with or at risk of acute kidney injury and their families and carers

Recommendations

People have the right to be involved in discussions and make informed decisions about their care, as described in NICE's information on making decisions about your care.

<u>Making decisions using NICE guidelines</u> explains how we use words to show the strength (or certainty) of our recommendations, and has information about professional guidelines, standards and laws (including on consent and mental capacity), and safeguarding.

1.1 Assessing risk of acute kidney injury

Identifying acute kidney injury in people with acute illness

- 1.1.1 Investigate for acute kidney injury, by measuring serum creatinine and comparing with baseline, in adults with acute illness if any of the following are likely or present:
 - chronic kidney disease (adults with an estimated glomerular filtration rate [eGFR] less than 60 ml/min/1.73 m² are at particular risk)
 - heart failure
 - liver disease
 - diabetes
 - history of acute kidney injury
 - oliguria (urine output less than 0.5 ml/kg/hour)
 - neurological or cognitive impairment or disability, which may mean limited access to fluids because of reliance on a carer
 - hypovolaemia

- use of drugs that can cause or exacerbate kidney injury (such as non-steroidal anti-inflammatory drugs [NSAIDs], aminoglycosides, angiotensin-converting enzyme [ACE] inhibitors, angiotensin II receptor antagonists [ARBs] and diuretics) within the past week, especially if hypovolaemic
- use of iodine-based contrast media within the past week
- symptoms or history of urological obstruction, or conditions that may lead to obstruction
- sepsis
- deteriorating early warning scores
- age 65 years or over. [2013]
- 1.1.2 Investigate for acute kidney injury, by measuring serum creatinine and comparing with baseline, in children and young people with acute illness if any of the following are likely or present:
 - · chronic kidney disease
 - heart failure
 - liver disease
 - history of acute kidney injury
 - oliguria (urine output less than 0.5 ml/kg/hour)
 - young age, neurological or cognitive impairment or disability, which may mean limited access to fluids because of reliance on a parent or carer
 - hypovolaemia
 - use of drugs that can cause or exacerbate kidney injury (such as NSAIDs, aminoglycosides, ACE inhibitors, ARBs and diuretics) within the past week, especially if hypovolaemic
 - symptoms or history of urological obstruction, or conditions that may lead to obstruction
 - sepsis

- a deteriorating paediatric early warning score
- severe diarrhoea (children and young people with bloody diarrhoea are at particular risk)
- symptoms or signs of nephritis (such as oedema or haematuria)
- haematological malignancy
- hypotension. [2013]

Identifying acute kidney injury in people with no obvious acute illness

- 1.1.3 Be aware that in adults, children and young people with chronic kidney disease and no obvious acute illness, a rise in serum creatinine may indicate acute kidney injury rather than a worsening of their chronic disease. [2013]
- 1.1.4 Ensure that acute kidney injury is considered when an adult, child or young person presents with an illness with no clear acute component and has any of the following:
 - chronic kidney disease, especially <u>stage 3B, 4 or 5 as shown in table1</u>, or urological disease
 - new onset or significant worsening of urological symptoms
 - symptoms suggesting complications of acute kidney injury
 - symptoms or signs of a multi-system disease affecting the kidneys and other organ systems (for example, signs or symptoms of acute kidney injury, plus a purpuric rash). [2013]

Assessing risk factors in adults having iodine-based contrast media

1.1.5 This recommendation has been deleted. Text about people at increased risk of kidney injury undergoing non-emergency imaging has been added to recommendation 1.1.6.

- 1.1.6 Before offering iodine-based contrast media to adults, assess their risk of acute kidney injury but do not delay emergency imaging. Be aware that increased risk is associated with:
 - chronic kidney disease (adults with an eGFR less than 40 ml/min/1.73 m² are at particular risk)
 - diabetes but only with chronic kidney disease (adults with an eGFR less than 40 ml/min/1.73 m² are at particular risk)
 - heart failure
 - renal transplant
 - age 75 years or over
 - hypovolaemia
 - increasing volume of contrast agent
 - intra-arterial administration of contrast medium with first-pass renal exposure.

For adults needing non-emergency imaging who are assessed as being at increased risk of kidney injury, investigate for chronic kidney disease before offering iodine-based contrast media: measure eGFR or check an eGFR result obtained within the past 3 months. [2013, amended 2023]

1.1.7 Include the risks of developing acute kidney injury in the routine discussion of risks and benefits of the imaging procedure. Follow the recommendations in the NICE guideline on shared decision making. [2013]

Assessing risk factors in adults having surgery

- 1.1.8 Assess the risk of acute kidney injury in adults before surgery. Be aware that increased risk is associated with:
 - emergency surgery, especially when the person has sepsis or hypovolaemia
 - intraperitoneal surgery

- chronic kidney disease (adults with an eGFR less than 60 ml/min/1.73 m² are at particular risk)
- diabetes
- · heart failure
- age 65 years or over
- liver disease
- use of drugs that can cause or exacerbate kidney injury in the perioperative period (in particular, NSAIDs after surgery).

Use the risk assessment to inform a clinical management plan. [2013]

1.1.9 Include the risks of developing acute kidney injury in the routine discussion of risks and benefits of surgery. Follow the recommendations in the NICE guideline on shared decision making. [2013]

1.2 Preventing acute kidney injury

Ongoing assessment of the condition of people in hospital

- 1.2.1 Follow the recommendations in the NICE guideline on acutely ill adults in hospital on the use of track and trigger systems (early warning scores) to identify adults who are at risk of acute kidney injury because their clinical condition is deteriorating or is at risk of deteriorating. [2013]
- 1.2.2 When adults are at risk of acute kidney injury, ensure that systems are in place to recognise and respond to oliguria (urine output less than 0.5 ml/kg/hour) if the track and trigger system (early warning score) does not monitor urine output. [2013]
- 1.2.3 Consider using a paediatric early warning score to identify children and young people admitted to hospital who are at risk of acute kidney injury because their clinical condition is deteriorating or is at risk of deteriorating.

- Record physiological observations at admission and then according to local protocols for given paediatric early warning scores.
- Increase the frequency of observations if abnormal physiology is detected.
 [2013]
- 1.2.4 If using a paediatric early warning score, use one with multiple-parameter or aggregate weighted scoring systems that allow a graded response and:
 - define the parameters to be measured and the frequency of observations
 - include a clear and explicit statement of the parameters, cut-off points or scores that should trigger a response. [2013]
- 1.2.5 If using a paediatric early warning score, use one with multiple-parameter or aggregate weighted scoring systems that measure:
 - heart rate
 - respiratory rate
 - systolic blood pressure
 - level of consciousness
 - oxygen saturation
 - temperature
 - capillary refill time. [2013]
- 1.2.6 When children and young people are at risk of acute kidney injury because of risk factors <u>listed in the recommendation in the section on identifying acute kidney injury in people with acute illness</u>:
 - measure urine output
 - record weight twice daily to determine fluid balance
 - measure urea, creatinine and electrolytes

• think about measuring lactate, blood glucose and blood gases. [2013]

Preventing acute kidney injury in adults having iodine-based contrast media

- 1.2.7 Encourage oral hydration before and after procedures using intravenous iodine-based contrast media in adults at increased risk of contrast-induced acute kidney injury (see the recommendation on increased risk in the section on assessing risk factors in adults having iodine-based contrast media). [2019]
- 1.2.8 For inpatients having iodine-based contrast media, consider intravenous volume expansion with either isotonic sodium bicarbonate or 0.9% sodium chloride if they are at particularly high risk, for example, if:
 - they have an eGFR less than 30 ml/min/1.73 m²
 - they have had a renal transplant
 - a large volume of contrast medium is being used (for example, higher than the standard diagnostic dose or repeat administration within 24 hours)
 - intra-arterial administration of contrast medium with <u>first-pass renal exposure</u> is being used.

For more information on managing intravenous fluid therapy, see the <u>NICE</u> guideline on intravenous fluid therapy in adults in hospital. [2019]

- 1.2.9 Consider temporarily stopping ACE inhibitors and ARBs in adults having iodine-based contrast media if they have chronic kidney disease with an eGFR less than 40 ml/min/1.73 m². [2013]
- 1.2.10 Discuss the person's care with a nephrology team before offering iodine-based contrast media to adults on renal replacement therapy, including people with a renal transplant, but do not delay emergency imaging for this. [2019]

For a short explanation of why the committee made the 2019 recommendations and how they might affect practice, see the <u>rationale and impact section on preventing</u> acute kidney injury in adults having iodine-based contrast media.

Full details of the evidence and the committee's discussion are in <u>evidence review A:</u> preventing contrast-induced acute kidney injury.

Monitoring and preventing deterioration in people with or at high risk of acute kidney injury

- 1.2.11 Consider electronic clinical decision support systems (CDSS) to support clinical decision making and prescribing, but ensure they do not replace clinical judgement. [2013]
- 1.2.12 When acquiring any new CDSS or systems for electronic prescribing, ensure that any systems considered:
 - · can interact with laboratory systems
 - can recommend drug dosing and frequency
 - can store and update data on patient history and characteristics, including age, weight and renal replacement therapy
 - can include alerts that are mandatory for the healthcare professional to acknowledge and review. [2013]
- 1.2.13 Seek advice from a pharmacist about optimising medicines and drug dosing in adults, children and young people with or at risk of acute kidney injury. [2013]
- 1.2.14 Consider temporarily stopping ACE inhibitors and ARBs in adults, children and young people with diarrhoea, vomiting or sepsis until their clinical condition has improved and stabilised. [2013]

1.3 Detecting acute kidney injury

- 1.3.1 Detect acute kidney injury, in line with the (p)RIFLE (paediatric Risk, Injury, Failure, Loss, End stage renal disease), AKIN (Acute Kidney Injury Network) or KDIGO (Kidney Disease: Improving Global Outcomes) definitions, by using any of the following criteria:
 - a rise in serum creatinine of 26 micromol/litre or greater within 48 hours
 - a 50% or greater rise in serum creatinine known or presumed to have occurred within the past 7 days (see also an <u>algorithm for early identification of acute</u> kidney injury, endorsed by NHS England)
 - a fall in urine output to less than 0.5 ml/kg/hour for more than 6 hours in adults and more than 8 hours in children and young people
 - a 25% or greater fall in eGFR in children and young people within the past 7 days. [2013]
- 1.3.2 Monitor serum creatinine regularly in all adults, children and young people with or at risk of acute kidney injury. Frequency of monitoring should vary according to clinical need, but daily measurement is typical while in hospital. [2013]

1.4 Identifying the cause(s) of acute kidney injury

1.4.1 Identify the cause(s) of acute kidney injury and record the details in the person's notes. [2013]

Urinalysis

- 1.4.2 Perform urine dipstick testing for blood, protein, leucocytes, nitrites and glucose in all people as soon as acute kidney injury is suspected or detected. Document the results and ensure that appropriate action is taken when results are abnormal. [2013]
- 1.4.3 Think about a diagnosis of acute nephritis and referral to the nephrology team when an adult, child or young person with no obvious cause of acute kidney injury has urine dipstick results showing haematuria and

proteinuria, without urinary tract infection or trauma due to catheterisation. [2013]

Ultrasound

- 1.4.4 Do not routinely offer ultrasound of the urinary tract when the cause of the acute kidney injury has been identified. [2013]
- 1.4.5 When pyonephrosis (infected and obstructed kidney[s]) is suspected in adults, children and young people with acute kidney injury, offer immediate ultrasound of the urinary tract (to be performed within 6 hours of assessment). [2013]
- 1.4.6 When adults, children and young people have no identified cause of their acute kidney injury or are at risk of urinary tract obstruction, offer urgent ultrasound of the urinary tract (to be performed within 24 hours of assessment). [2013]

1.5 Managing acute kidney injury

Relieving urological obstruction

- 1.5.1 Refer all adults, children and young people with upper tract urological obstruction to a urologist. Refer immediately when one or more of the following is present:
 - pyonephrosis
 - an obstructed solitary kidney
 - bilateral upper urinary tract obstruction
 - complications of acute kidney injury caused by urological obstruction. [2013]
- 1.5.2 When nephrostomy or stenting is used to treat upper tract urological obstruction in adults, children and young people with acute kidney injury, carry it out as soon as possible and within 12 hours of diagnosis. [2013]

Pharmacological management

- 1.5.3 Do not routinely offer loop diuretics to treat acute kidney injury. [2013]
- 1.5.4 Consider loop diuretics for treating fluid overload or oedema while:
 - an adult, child or young person is awaiting renal replacement therapy or
 - renal function is recovering in an adult, child or young person not receiving renal replacement therapy. [2013]
- 1.5.5 Do not offer low-dose dopamine to treat acute kidney injury. [2013]

Referring for renal replacement therapy

- 1.5.6 Discuss any potential indications for renal replacement therapy with a nephrologist, paediatric nephrologist and/or critical care specialist immediately to ensure that the therapy is started as soon as needed.
 [2013]
- 1.5.7 When an adult, child or young person has significant comorbidities, discuss with them and/or their parent or carer and within the multidisciplinary team whether renal replacement therapy would offer benefit. Follow the recommendations in the NICE guideline on shared decision making. [2013]
- 1.5.8 Refer adults, children and young people immediately for renal replacement therapy if any of the following are not responding to medical management:
 - hyperkalaemia
 - · metabolic acidosis
 - symptoms or complications of uraemia (for example, pericarditis or encephalopathy)
 - fluid overload
 - pulmonary oedema. [2013]

- 1.5.9 Base the decision to start renal replacement therapy on the condition of the adult, child or young person as a whole and not on an isolated urea, creatinine or potassium value. [2013]
- 1.5.10 When there are indications for renal replacement therapy, the nephrologist and/or critical care specialist should discuss the treatment with the adult, child or young person and/or their parent or carer as soon as possible and before starting treatment. Follow the recommendations in the NICE guideline on shared decision making. [2013]

Referring to nephrology

- 1.5.11 Refer adults, children and young people with acute kidney injury to a nephrologist, paediatric nephrologist or critical care specialist immediately if they meet criteria for renal replacement therapy in recommendation 1.5.8. [2013]
- 1.5.12 Do not refer adults, children or young people to a nephrologist or paediatric nephrologist when there is a clear cause for acute kidney injury and the condition is responding promptly to medical management, unless they have a renal transplant. [2013]
- 1.5.13 Consider discussing management with a nephrologist or paediatric nephrologist when an adult, child or young person with severe illness might benefit from treatment, but there is uncertainty as to whether they are nearing the end of their life. [2013]
- 1.5.14 Refer adults, children and young people in intensive care to a nephrology team when there is uncertainty about the cause of acute kidney injury or when specialist management of kidney injury might be needed. [2013]
- 1.5.15 Discuss the management of acute kidney injury with a nephrologist or paediatric nephrologist as soon as possible and within 24 hours of detection when one or more of the following is present:
 - a possible diagnosis that may need specialist treatment (for example, vasculitis, glomerulonephritis, tubulointerstitial nephritis or myeloma)

- acute kidney injury with no clear cause
- inadequate response to treatment
- complications associated with acute kidney injury
- stage 3 acute kidney injury (according to (p)RIFLE, AKIN or KDIGO criteria)
- a renal transplant
- chronic kidney disease stage 4 or 5 as shown in table 1. [2013]
- 1.5.16 Monitor serum creatinine after an episode of acute kidney injury. Base the frequency of monitoring on the stability and degree of renal function at the time of discharge. Consider referral to a nephrologist or paediatric nephrologist when eGFR is 30 ml/min/1.73 m² or less in adults, children and young people who have recovered from an acute kidney injury.

 [2013]
- 1.5.17 Consider referral to a paediatric nephrologist for children and young people who have recovered from an episode of acute kidney injury but have hypertension, impaired renal function or 1+ or greater proteinuria on dipstick testing of an early morning urine sample. [2013]

1.6 Information and support for patients and carers

- 1.6.1 Discuss immediate treatment options, monitoring, prognosis and support options as soon as possible with people with acute kidney injury and/or, if appropriate, their parent or carer. Follow the recommendations on patient views and preferences and shared decision making in the NICE guidelines on patient experience in adult NHS services and shared decision making. [2013]
- 1.6.2 Give information about long-term treatment options, monitoring, self-management and support to people who have had acute kidney injury (and/or their parent or carer, if appropriate) in collaboration with a multidisciplinary team appropriate to the person's individual needs.
 [2013]

- 1.6.3 Give information about future care to people needing renal replacement therapy after discharge following acute kidney injury. This should include information about the frequency and length of dialysis sessions and the preparation needed (such as having a fistula or peritoneal catheter).
 [2013]
- 1.6.4 Discuss the risk of developing acute kidney injury, particularly the risk associated with conditions leading to dehydration (for example, diarrhoea and vomiting) and drugs that can cause or exacerbate kidney injury (including over-the-counter NSAIDs), with people who are at risk of acute kidney injury, particularly those who have:
 - chronic kidney disease with an eGFR less than 60 ml/min/1.73 m²
 - neurological or cognitive impairment or disability, which may mean limited access to fluids because of reliance on a carer.

Involve parents and carers in the discussion if appropriate. [2013]

Terms used in this guideline

This section defines terms that have been used in a particular way for this guideline. For other definitions see the <u>NICE glossary</u>.

First-pass renal exposure

First-pass renal exposure is when the contrast medium reaches the renal arteries in a relatively undiluted form, for example, through injection into the left heart, thoracic and suprarenal abdominal aorta, or the renal arteries.

Stages of chronic kidney disease

Table 1 The stages of chronic kidney disease

Stage	eGFR (ml/ min/ 1.73 m ²)	Description	Qualifier
1	≥90	Kidney damage, normal or increased GFR	Kidney damage (presence of structural abnormalities and/or persistent haematuria, proteinuria or microalbuminuria) for ≥3 months
2	60–89	Kidney damage, mildly reduced GFR	Kidney damage (presence of structural abnormalities and/or persistent haematuria, proteinuria or microalbuminuria) for ≥3 months
3A	45–59	Moderately reduced GFR ± other evidence of kidney damage	GFR <60 ml/min for ≥3 months ± kidney damage
3B	30-44	Moderately reduced GFR ± other evidence of kidney damage	GFR <60 mI/min for ≥3 months ± kidney damage
4	15–29	Severely reduced GFR ± other evidence of kidney damage	GFR <60 mI/min for ≥3 months ± kidney damage
5	<15	Established kidney failure	GFR <60 ml/min for ≥3 months ± kidney damage

Recommendations for research

As part of the 2019 update, the guideline committee made 2 new research recommendations (marked [2019]). Research recommendations retained from the 2013 guideline are labelled [2013].

Key recommendations for research

1 Risk stratification for contrast-induced acute kidney injury

Can risk of contrast-induced acute kidney injury be stratified by eGFR thresholds? [2019]

For a short explanation of why the committee made the recommendation for research, see the <u>rationale on preventing acute kidney injury in adults having iodine-based</u> contrast media.

Full details of the evidence and the committee's discussion are in <u>evidence review A:</u> <u>preventing contrast-induced acute kidney injury.</u>

2 Different oral fluids and oral fluid regimens

What is the relative effectiveness and cost effectiveness of different oral fluids and different oral fluid regimens, both with and without oral N-acetylcysteine, at preventing contrast-induced acute kidney injury? [2019]

For a short explanation of why the committee made the recommendation for research, see the <u>rationale on preventing acute kidney injury in adults having iodine-based</u> contrast media.

Full details of the evidence and the committee's discussion are in <u>evidence review A:</u> <u>preventing contrast-induced acute kidney injury.</u>

3 Long-term outcomes of acute kidney injury

What are the long-term outcomes of acute kidney injury in adults, children and young people? [2013]

4 Rapid referral to nephrology services for moderate to severe acute kidney injury

What is the clinical and cost effectiveness of rapid referral (within 12 hours) to nephrology services for adults with moderate to severe (stage 2 to 3) acute kidney injury not needing critical care? [2013]

5 Definition of acute kidney injury – system for staging and detection

Can a simplified definition and staging system, based on Système International (SI) units, be used to predict short- to medium-term outcomes in acute kidney injury? [2013]

6 Introducing renal replacement therapy

What is the clinical and cost effectiveness of early versus later introduction of renal replacement therapy in patients with acute kidney injury stages 2 and 3, when there is no urgent need for therapy? [2013]

7 Preventing deterioration

What is the clinical and cost effectiveness of continuing ACE inhibitor or ARB treatment, versus stopping treatment 24 hours before cardiac surgery and resuming 24 hours after, in people with chronic kidney disease and an eGFR of less than 30 ml/min/1.73m²? [2013]

Rationale and impact

This section briefly explains why the committee made the recommendations and how they might affect practice. It links to details of the evidence and a full description of the committee's discussion.

Preventing acute kidney injury in adults having iodine-based contrast media

Recommendations 1.2.7, 1.2.8 and to 1.2.10

Why the committee made the recommendations

For adults undergoing procedures with intravenous iodine-based contrast media, the evidence showed that oral fluids were as good as intravenous fluids at preventing contrast-induced acute kidney injury. The evidence did not show that any particular type of oral or intravenous fluids is most effective.

The committee agreed that intravenous fluids are not necessary for outpatients who are usually at a lower risk of contrast-induced acute kidney injury. It also agreed that only inpatients at particularly high risk needed intravenous fluids. Most of the risk factors were taken from recommendation 1.1.6 (developed as part of the 2013 guideline) apart from the level of eGFR which was based on the committee's clinical knowledge and experience. The committee also agreed that, based on their experience and expertise, the risk for intra-arterial administration depends on the site of the injection, and is particularly high with first-pass renal exposure because the contrast medium passes into the kidneys relatively undiluted.

For inpatients at particularly high risk of contrast-induced acute kidney injury, economic modelling showed that intravenous volume expansion with a regimen containing intravenous sodium chloride 0.9% and/or intravenous sodium bicarbonate provides best value.

Based on the evidence, the committee decided that intravenous volume expansion should be used only for inpatients at particularly high risk and that oral hydration should be encouraged in all other adults at increased risk of contrast-induced acute kidney injury.

The committee agreed that more research on estimating the risk of contrast-induced acute kidney injury would help to inform future guidance, so made a <u>research</u> recommendation on the use of eGFR thresholds to stratify risk.

Although the committee agreed that oral hydration regimens were non-inferior to intravenous hydration regimens at preventing contrast-induced acute kidney injury, there was not enough comparative data to enable them to be clear about which oral fluid (if any) was most effective. There was some limited evidence that N-acetylcysteine was not beneficial. However, the committee agreed that, in the absence of evidence of harm, this was not sufficient to make a recommendation to restrict its use. Therefore, it made a research recommendation on different oral fluids and different oral fluid regimens, with and without N-acetylcysteine.

The committee did not consider it necessary for all patients being offered iodine-based contrast media to be routinely discussed with a nephrology team, but concluded that this was important for adults on renal replacement therapy, including people with a kidney transplant. The radiology team responsible for administering the contrast medium or the healthcare professional offering the procedure, such as a cardiologist, would usually do this. For people with other contraindications to intravenous fluids, the committee agreed that the decision to give iodine-based contrast media was better made by individual healthcare professionals.

How the recommendations might affect practice

The recommendations may result in lower resource use for outpatient procedures because people will not need to be admitted to hospital to be given intravenous fluids for volume expansion before they are given a contrast medium.

The recommendation on intravenous volume expansion reflects current practice so there should be no change in practice for inpatients who are at particularly high risk of contrast-induced acute kidney injury. There may be reduced resource use for lower risk inpatients who will not need intravenous fluids.

Full details of the evidence and the committee's discussion are in <u>evidence review A:</u> preventing contrast-induced acute kidney injury.

Acute kidney injury: prevention, detection and management (NG148)					
Return to recommendations					

Context

Acute kidney injury, previously known as acute renal failure, encompasses a wide spectrum of injury to the kidneys, not just kidney failure. The definition of acute kidney injury has changed in recent years, and detection is now mostly based on monitoring creatinine levels, with or without urine output. Acute kidney injury is increasingly being seen in primary care in people without any acute illness, and awareness of the condition needs to be raised among primary care health professionals.

Acute kidney injury is seen in 13% to 18% of all people admitted to hospital, with older adults being particularly affected. These people are usually under the care of healthcare professionals practising in specialties other than nephrology, who may not always be familiar with the optimum care of people with acute kidney injury. The number of inpatients affected by acute kidney injury means that it has a major impact on healthcare resources. The costs to the NHS of acute kidney injury (excluding costs in the community) are estimated to be between £434 million and £620 million per year, which is more than the costs associated with breast cancer, or lung and skin cancer combined.

There have been concerns that suboptimal care may contribute to the development of acute kidney injury. In 2009, the National Confidential Enquiry into Patient Outcome and Death (NCEPOD) reported the results of an enquiry into the deaths of a large group of adults with acute kidney injury. This described systemic deficiencies in the care of people who died from acute kidney injury: only 50% of these had received 'good' care. Other deficiencies in the care of people who died of acute kidney injury included failures in acute kidney injury prevention, recognition, therapy and timely access to specialist services. This report led to the Department of Health's request for NICE to develop its first guideline on acute kidney injury in adults and also, importantly, in children and young people.

This guideline emphasises early intervention and stresses the importance of risk assessment and prevention, early recognition and treatment. It is primarily aimed at the non-specialist clinician, who will care for most people with acute kidney injury in a variety of settings. The recommendations aim to address known and unacceptable variations in recognition, assessment, initial treatment and referral for renal replacement therapy. The inpatient mortality of acute kidney injury varies considerably, depending on its severity, setting (intensive care or not), and many other patient-related factors, but in the UK might typically be 25% to 30% or more. In view of its frequency and mortality rate, prevention or amelioration of just 20% of cases of acute kidney injury would prevent a large number of

deaths and substantially reduce complications and their associated costs.

New evidence was identified by the NICE surveillance team on preventing contrast-induced acute kidney injury. Topic experts, including those who helped to develop the 2013 guideline, agreed that a significant new study could have an impact on the recommendations. This evidence has been reviewed and the recommendations in this area updated.

Finding more information and resources

To find NICE guidance on related topics, including guidance in development, see the <u>NICE</u> topic page on acute kidney injury.

For full details of the evidence and the guideline committee's discussions, see the <u>evidence reviews</u>. You can also find information about <u>how the guideline was developed</u>, including <u>details of the committee</u>.

NICE has produced <u>tools and resources</u> to help you put this guideline into practice. For general help and advice on putting NICE guidelines into practice, see <u>resources to help you put guidance into practice</u>.

Update information

September 2023: We amended recommendations on offering iodine-based contrast media to adults to clarify that, for non-emergency imaging, an estimated glomerular filtration rate (eGFR) measurement is only needed if the person is at increased risk of kidney injury. See the surveillance report for more information.

December 2019: We have reviewed the evidence and made new recommendations on preventing acute kidney injury in adults having iodine-based contrast media. These recommendations are marked [2019].

Recommendations marked [2013] last had an evidence review in 2013. In some cases minor changes have been made to the wording to bring the language and style up to date, without changing the meaning.

Minor changes since publication

October 2021: We added a link to NICE's guideline on shared decision making, in recommendations 1.1.7, 1.1.9, 1.5.7, 1.5.10 and 1.6.1.

September 2021: In recommendation 1.3.1 we added a cross-reference to an algorithm endorsed by NHS England for early identification of acute kidney injury.

ISBN: 978-1-4731-5427-8

Accreditation

